

WJEC (Wales) Chemistry A-level

Topic 3.1 - Redox and Standard Electrode Potential

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Define oxidation in terms of electron transfer

Define oxidation in terms of electron transfer

Loss of electrons

Define reduction in terms of electron transfer

Define reduction in terms of electron transfer

Gain of electrons

What is a redox reaction?

What is a redox reaction?

A redox reaction is a reaction in which oxidation and reduction occur on different species simultaneously.

What is standard electrode potential?

What is standard electrode potential?

Standard electrode potential is the potential across the electrodes when a redox system is connected to a hydrogen half-cell under standard conditions.

What conditions are required for measuring the standard electrode potential?

What conditions are required for measuring the standard electrode potential?

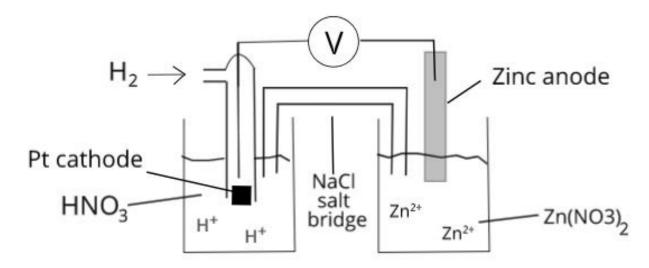
- 298 K temperature
- 100 kPa pressure
- 1.00 mol dm⁻³ concentration of ions

Why is a hydrogen half-cell needed as a reference?

Why is a hydrogen half-cell needed as a reference?

The hydrogen half cell is used to allow for easy comparison between the electrode potential of different elements. The standard electrode potential for hydrogen is assumed to be zero volts at any temperature.

What is the experimental setup to calculate the standard electrode potential for zinc?



What is the experimental setup to calculate the standard electrode potential for zinc?

The hydrogen standard cell is always placed on the left.

Why must metal electrodes be cleaned with sandpaper before creating an electrochemical cell?

Why must metal electrodes be cleaned with sandpaper before creating an electrochemical cell?

To remove any metal oxide that has formed on the surface and improve electrical conductivity.

Describe the movement of electrons in an electrochemical cell

Describe the movement of electrons in an electrochemical cell

Electrons flow through the wire from the positive electrode to the negative electrode.

Why is a salt bridge used in an electrochemical cell?

Why is a salt bridge used in an electrochemical cell?

To maintain the charge balance and complete the circuit.

Negative electrons are moving from one half cell to another. Without the salt bridge, positive charge would build up in the half cell containing the anode and negative charge would build up in the half cell containing the cathode. This would cause the reaction to stop.

Why must an inert salt be used in the salt bridge?

Why must an inert salt be used in the salt bridge?

The salt must be inert so that it doesn't react with the solutions and alter the ion concentrations. If a reactive salt was used, the cell potential would change.

What moves across the salt bridge?

What moves across the salt bridge?

lons

For what range of cell potential values is a process feasible?

For what range of cell potential values is a process feasible?

Cell potential must be greater than 0.

How can cell potential be calculated?

How can cell potential be calculated?

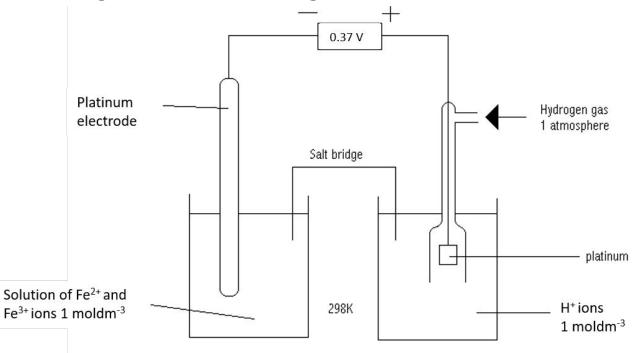
$$E_{\theta} =$$

 E^{θ} (positive terminal) - E^{θ} (negative terminal)

Why might theoretical cell potential values be different to values obtained experimentally?

Why might theoretical cell potential values be different to values obtained experimentally?

Conditions may be non-standard.


Draw a diagram showing a standard Fe²⁺/Fe³⁺ cell

Draw a diagram showing a standard Fe²⁺/Fe³⁺ cell

A cell is made up of the following half cells:

$$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$$
 $E^{\theta} = +0.80V$ $Cu^{2+}(aq) + 2e^{-} \rightleftharpoons Cu(s)$ $E^{\theta} = +0.34V$ Write the overall cell equation and calculate the standard cell potential

A cell is made up of the following half cells:

$$Ag^{+}(aq) + e^{-} = Ag(s)$$
 $E^{\theta} = +0.80V$

$$Cu^{2+}(aq) + 2e^{-} = Cu(s)E^{\theta} = +0.34V$$

Write the overall cell equation and calculate the standard cell potential

$$2Ag^{+}(aq) + Cu(s) \rightarrow Ag(s) + Cu^{2+}(aq)$$

$$E_{cell}^{\theta} = +0.80 - (+0.34) = 0.46V$$

In an electrochemical cell, is the more negative half cell oxidised or reduced?

In an electrochemical cell, is the more negative half cell oxidised or reduced?

Oxidised

What is a fuel cell?

What is a fuel cell?

A cell that continually produces a voltage as long as it is supplied with oxygen and a fuel (like hydrogen).

What is the only product of a hydrogen-oxygen fuel cell?

What is the only product of a hydrogen-oxygen fuel cell?

Water

How does a hydrogen-oxygen fuel cell work?

How does a hydrogen-oxygen fuel cell work?

Hydrogen and oxygen are pumped through porous electrodes. The electrolyte is often an acid such as phosphoric acid.

Hydrogen and oxygen react, producing energy and water.

What are the two half equations taking place in a hydrogen-oxygen fuel cell?

What are the two half equations taking place in a hydrogen-oxygen fuel cell?

$$2H_2 + 4OH^- \rightleftharpoons 4H_2O + 4e^-$$

$$O_2 + 2H_2O + 4e^- \rightleftharpoons 4OH^-$$

Write an equation for the overall reaction that takes place in a hydrogen-oxygen fuel cell

Write an equation for the overall reaction that takes place in a hydrogen-oxygen fuel cell

$$2H_2 + O_2 \rightarrow 2H_2O$$

What are the advantages of using fuel cells?

What are the advantages of using fuel cells?

- No pollution.
- They produce more energy than an alternative fuel like petrol.
- The process is continuous as long as the fuel is supplied.

What are the disadvantages of using fuel cells?

What are the disadvantages of using fuel cells?

- Materials used to make them are expensive.
- High pressure tanks are required to store oxygen and fuels like hydrogen.
- Hydrogen is expensive and hard to store.
- Efficiency is affected by temperature.

